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BREAKAWAY FLOW AROUND GRIDS OF NONCIRCULAR TUBES 

M. I. Nisht and A. G. Sudakov UDC 532.5.013.12:532.54 

On the basis of the discrete-vortex method, breakaway flow around a single-row 
assembly (grid) of tubes of square, rectangular, and triangular cross section 
is investigated. 

i. Loss of pressure (resistance) and heat transfer in the transverse flow around tube 
assemblies are determined primarily by the character of the fluid flow close to the tube sur- 
faces, which, in turn, depends on the geometric parameters of the assembly (the shape of the 
tube cross section, their distance apart, etc.) and on the conditions of flow around the as- 
sembly (Reynolds number Re). In the range of Reynolds numbers characteristic in practice, 
flow around the tubes is always of breakaway type and is accompanied by the formation of a 
developed accompanying wake behind the tubes [i]. 

The difficulty in solving the complete Navier--Stokes or Reynolds equations for describ- 
ing breakaway flow conditions at bodies with limitingly high Re, when the influence of mole- 
cular viscosity on the flow is slight, has led to the development of calculation methods based 
on the model of an ideal medium. An example of the realization of this approach is the cur- 
rently widespread discrete-vortex method [2]. The agreement between the calculation results 
obtained by this method and experimental data provides the basis for the assumption that this 
approach is justified in considering completely developed turbulent flow, when the flow- 
breakaway point at the surface of the body is known in advance. 

In the present work, results obtained by the discrete-vortex method are given for the 
resistance of a single-row assembly (grid) of tubes of square, rectangular, and triangular 
cross section. Grids consisting of plates are also considered. It is supposed that flow 
breakaway at these bodies occurs for tubes at points of discontinuity of the cross section 
and for plates at their sharp edges. Note that the calculation results for the flow obtained 
by the discrete-vortex method are the initial data for calculating the boundary layer at tube 
surfaces and the heat transfer between the tubes and the flow. 

2. The basic assumptions of the discrete-vortex method for calculating various break- 
away flows were outlined in [2]; they reduce to the following. The medium is ideal and in- 
compressible. Breakaway is modeled using vortex surfaces that are convergent in the flow. 
The character of the limiting flow in the general case is established by studying the whole 
process of flow formation over time. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 6, pp. 947-951, December,-- 
1986. Original article submitted November 19, 1985. 
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Nonsteady breakaway flow around an infinite grid of 

Fig._2. Dependence of the drag coefficient Cx ~ on the spac- 
ing H for grids consisting of rectangular tubes (i), square 
tubes (2), triangular tubes with their vertices turned toward 
the incoming flow (3), and triangular tubes with their bases 
turned toward the incoming flow (4), and theoretical (5) and 
experimental [4] (6) results for grids made from plates. 

The mathematical formulation of the given problem is outlined for the example of non- 
steady breakaway flow at an infinite grid of cylindrical tubes of triangular cross section 
(Fig. i). One significant assumption adopted in formulating both this and other problems may 
be noted. The solution of the problem is sought in the class of symmetric functions, i.e., 
it is assumed that symmetry of the bodies in the grid and of boundary and initial conditions 
ensures symmetry of the flow. Thus, to solve the problem, it is sufficient to consider the 
flow arising in the region around one of the symmetric halves of the tube cross section and 
bounded by the symmetry planes AA and BB. 

The mathematical formulation of the problem includes a continuity equation in the form 
of a Laplace equation for the potential of the relative flow, which is valid everywhere out- 
side the cross section F and its wake Z; the Chaplygin--Zhukovskii hypothesis of finite velo- 
city at point L of cross section F, where the vortex surface Z converges with the body; the 
kinematic continuity condition of the normal velocity component and the dynamic continuity 
condition of the pressure at the vortex surface Z; the condition that the fluid does not 
penetrate through the tube surface and the symmetry surfaces AA and BB. Additionally, the 
condition at infinite distance from the grid and the wake and also specified initial condi- 
tions are used in the given problem. 

Numerical realization of this nonlinear model of breakaway flow around bodies is based 
on the replacement of the continuous vortex surfaces forming the breakaway flow by a system 
of discrete vortices. This reduces the problem of investigating the integrodifferen- 
tial equations which describe the behavior of the continuous vortex surface to solving a con- 
siderably simpler system of ordinary differential equations. The contour of cross section F 
of the tube and its wake are replaced by a system of discrete vortices. The boundary condi- 
tion of impenetrability of the tube surfaces is satisfied at a finite number of control points, 
whose positions are chosen in accordance with the recommendations in [2]. To satisfy the im- 
penetrability conditions for the symmetry planes AA and BB, a vortex in a plane rectilinear 
channel is used as the basic vortex element. The velocity field and flow potential induced 
by this vortex element may be obtained by the method of conformal transformations or the meth- 
od of successive mappings. Thus, for a discrete vortex with intensity F at a point with co- 
ordinates xo, Y0 of a channel of width Hk/2, the velocity components and flow potential at 
point x, y are determined from the formulas 

Vx r [ sin 2~ (Y--9o) sin 2~ ] H~ H~ (y + v0) 

= ---- [ 2~ " 2~ J; 2Hh ch 2~ (x Xo) - -  cos, (Y - -  9o) ch 2~ (x - -  xo) - -  cos - (V + Vo) 
Hh Hh H~ Hh 
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V y  = _ _ ~  
2Hh 

F [ sh 2_._~ (x--Xo) 
Hk [ ch 2n (X - -  Xo) - -  cos ' - ( b ' - - g o )  

Hh Hh 
i 

sh 2~ (X--Xo) ] 
Hn 

1 _ _  2~ ch 2n (x - -  Xo) - -  cos (V + Yo) 
H~. Hh 

r ~ ~ ~ 

where C = 0, y > yo; C = ~, y < Yo, x _> xo; C =--~, y < yo, x < xo. 

The nonsteady problem is solved in stepwise fashion, by passing from one calculationa! 
moment of time to another, and reduces, at each calculational moment, to the successive solu- 
tion of two systems of equations, one of which includes linear algebraic equations, while the 
other includes ordinary linear differential equations. 

The system of algebraic equations is well-founded, and therefore the simple and reliable 
Gauss method is used for its solution. The system of differential equations describing the 
motion of free vortices is integrated by the Euler method, with a time step equal to the cal- 
culational time interval of free-vortex formation At. Regarding At, it must be noted that in 
[2] the determination of the calculational time interval in accordance with the discretiza- 
tion scheme for the body in the flow and the velocity of the incoming flow was recommended. 
Since the velocity of the incoming flow at the grid may differ considerably from the flow 
velocity in the vicinity of the breakaway point in the given problem, depending on the grid 
parameters (and it is the latter velocity which determines the process of vortex formation and 
erosion), the following formula is proposed for the calculational time interval At 

At=h/V , 
where Vo~ L is the tangentiel component of the mean flow velocity at the point where the 
Chaplygin--Zhukovskii hypothesis is satisfied. 

From the vortex circulation found at each calculational moment, using the Cauchy--Lagrange 
integral [3], the pressure distribution over the tube surface is calculated, and by integrat- 
ing the pressure over the surface the drag coefficient of the grid is found. 

3. On the basis of the foregoing method, breakaway flow around grids consisting of tubes 
of various cross sections has been calculated on a computer. Three forms of tube cross sec- 
tion are studied: equilateral triangles, squares, and rectangles with a base a equal to half 
the height b) grids consisting of plates are also studied. For triangular tubes, two orient- 
ations in the flow are considereds bases and vertices opposite to the incoming flow. All the 
tubes have the same cross-sectional height b, taken as the characteristic linear dimension in 
the present work. Depending on the form of the body in the flow, different numbers of dis- 
crete vortices (40 ! N ! 80) are employed in the calculations. The formation of a limiting 
flow occurs with variation in the velocity of the incoming flow according to the law 

where T = Uot/b. 

Initially (T < T*), 
surface of spiral form. 

U(~)=O, ~r~O; U(~c)=Uo, z>O, 

the vortex sheet converging with the tube surface is a continuous 
Over time, as nonsteady flow develops, the vortex sheet loses stabil- 

ity and breaks down. In the wake, agglomerations of finite size are formed. The quantity T* 
characterizing the onset of sheet breakdown depends weakly on the form of the tube cross sec- 
tion and is determined principally by the grid spacing H = Hk/b. Decrease in grid spacing 
leads to more rapid breakdown of the vortex sheet and the establishment of a discrete structure 
of the vortex wake. For example, for H = 1.4, ~* = 1.0; for H = i.I, ~* = 0.i. 

The aerodynamic loads acting on the grid also vary in accordance with the features of wake 
development. The dependence Cx(T) is characterized by limiting values Cx ~ which are estab- 
lished after the end of transient conditions of flow formation in the wake immediately behind 
the grid. For the given configurations of the tube cross section and grid spacing values H = 
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Fig. 3. Limiting pressure distribution ~o over the surface of triangular 
tubes with their bases (curves 1-3) and their vertices (curves 4-6) turned 
toward the flow: i, 6) H = 1.4; 2, 5) 1.6; 3, 4) 1,8. 

Fig. 4. Development over time of breakaway flow around a bundle of rec- 
tangular tubes arranged in a corridor configuration: a) form of vortex 
sheet at times ~ = 0.45 (I) and 0.75 (2); b, c) vector velocity fields at 
times T = 1.85 and 2.50, respectively. 

1.4, 1.6, 1.8, the time for formation of the wake immediately behind the grid is T = 1.2. 
Theoretical values of the drag coefficients of grids made from tubes and plates are shown in 
Fig. 2, together with experimental data on the resistance of plate grids taken from [4~. As 
is evident from Figo 2, the theoretical and experimental results are in good agreement. De- 
crease in the grid spacing leads to sharp increase in drag coefficient. Grids consisting of 
triangular tubes with their bases turned toward the incoming flow have the greatest resistance. 
Note that the resistance of such grids practically coincides with the drag of plate grids. 

The influence of the grid parameters on the local aerodynamic characteristics -- curves 
of p~ -- is shown in Fig. 3 for the example of tubes of triangular cross section. The di- 
mensionless coordinate s varies along the contour of the cross section and is measured from 
the point x = 0 (leading stagnation point of the flow). As is evident from Fig. 2, the grid 
spacing and orientation of its elements have a significant influence on the attenuation behind 
the grid. The pressure along the grid (along the y axis) in the bottom region is practically 
unchanged here. 

Note, in conclusion, that breakaway flow may be studied using the method here considered 
not only for grids but also for bundles of tubes arranged in a different order, for example, 
corridor configuration (Fig. 4). 

NOTATION 

Re, Reynolds number; Uo, flow velocity; x, y, spatial coordinates! t, time; Hk, grid spac- 
ing~ b, height of tube cross section; T, dimensionless time! H, dimensionless grid spacing; 
N, number of discrete vortices; At, calculational time step; h, vortex-scheme step; ~o, dimen- 
sionless pressure (referred to 0.5 pUo2); p, liquid densityl Cx, drag coefficient. 

LITERATURE CITED 

i. I. E. Idel'chik, Aerodynamics of Technological Apparatus [in Russian], Moscow (1983). 
2. S.M. Belotserkovskii and M. I. Nisht, Breakaway and Nonbreakaway Flow of Ideal Liquid 

around Thin Edges [in Russian], Moscow (1978). 
3. N. E. Kochin, K. A. Kibel', and N. V. Roze, Theoretical Hydromechanics [in Russian], 

Moscow (1963), Part i. 
4. B. W. Roberts, in: AIAA Sixth Aerodynamic Deceleration and Balloon Technology Conference, 

Houston, Texas (1979), pp. 280-290. 

1420 


